
Acta Numerica (2009), pp. 243–275 c© Cambridge University Press, 2009

doi: 10.1017/S0962492906410011 Printed in the United Kingdom

Fast direct solvers for integral equations
in complex three-dimensional domains

Leslie Greengard∗

Courant Instiute of Mathematical Sciences, New York University,
New York, NY 10012, USA

E-mail: greengard@courant.nyu.edu

Denis Gueyffier†

Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

E-mail: dgueyffier@giss.nasa.gov

Per-Gunnar Martinsson‡

Department of Applied Mathematics, University of Colorado at Boulder,
526 UCB, Boulder, CO 80309-0526, USA
E-mail: per-gunnar.martinsson@colorado.edu

Vladimir Rokhlin§

Department of Mathematics and Department of Computer Science,
Yale University, 10 Hillhouse Avenue, New Haven CT 06511, USA

E-mail: rokhlin@cs.yale.edu

∗ This work was supported in part by the Applied Mathematical Sciences Program of
the US Department of Energy under Contract DEFG0200ER25053.

† This work was supported by DARPA through the Protein Design Processes Program
(DSO contract HR0011-05-1-0044). Present address: NASA GISS and Columbia Uni-
versity, 2880 Broadway, New York, NY 10025.

‡ This work was supported in part by National Science Foundation grants DMS-0748488
and DMS-0610097.

§ This work was supported in part by AFOSR grant FA9550-07-1-0541.

244 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

Methods for the solution of boundary integral equations have changed signif-
icantly during the last two decades. This is due, in part, to improvements
in computer hardware, but more importantly, to the development of fast al-
gorithms which scale linearly or nearly linearly with the number of degrees
of freedom required. These methods are typically iterative, based on cou-
pling fast matrix-vector multiplication routines with conjugate-gradient-type
schemes. Here, we discuss methods that are currently under development for
the fast, direct solution of boundary integral equations in three dimensions.
After reviewing the mathematical foundations of such schemes, we illustrate
their performance with some numerical examples, and discuss the potential
impact of the overall approach in a variety of settings.

CONTENTS

1 Introduction 244
2 The rapid application of operators 246
3 Fast direct solvers for structured matrices 252
4 Potential theory for the Poisson equation 254
5 A single-level fast solver 258
6 Numerical results I 262
7 Local geometric perturbations 263
8 Numerical results II 265
9 Conclusions 267
Appendix: Rapid inversion of operators 268
References 272

1. Introduction

Modern numerical methods for the solution of boundary integral equations
with large numbers of degrees of freedom are currently based on the avail-
ability of fast algorithms for matrix-vector multiplication (application of the
discretized integral operator). These include fast multipole methods, panel
clustering methods, the method of local corrections, multigrid, precorrected-
FFT and wavelet-based methods. Briefly stated, discretization of a bound-
ary integral equation yields a dense N × N matrix, where N denotes the
number of degrees of freedom used in describing the surface density defined
on the given geometry. As a result, classical solution techniques, based on
Gaussian elimination, require O(N3) work to factor the system matrix. The
fast algorithms listed above provide the ability to apply the discretized in-
tegral operator to a vector in O(N) or O(N log N) operations rather than
O(N2). The combination of such a scheme with modern iterative methods
– such as GMRES (Saad and Schultz 1986) – and well-conditioned integral

Fast direct solvers for integral equations in 3D domains 245

equation formulations has reduced the net work required to O(N log N),
bringing large-scale simulations within practical reach. The literature on
this subject is now vast, and we refer the reader to only a few relevant pub-
lications: Carrier, Greengard and Rokhlin (1988), Chew, Jin, Michielssen
and Song (2001), Darve and Have (2004), Greengard and Helsing (1998),
Greengard and Rokhlin (1987, 1997), Hackbusch and Nowak (1989), Kapur
and Long (1997), Nabors and White (1991), and Nishimura (2002).

Nevertheless, there are a number of areas where significant improvement
can still be made. First, iterative methods deal poorly with ill-conditioned
problems or with multiple right-hand sides. This is in marked contrast
to classical direct methods which, following the O(N3) factorization step,
require only O(N2) work to solve the linear system for each subsequent
right-hand side. A second motivation for direct methods is that they are
extremely effective at handling low-rank perturbations of the system matrix.
In particular, the solution to the perturbed system can also be obtained in
O(N2) work. An obvious question, then, is whether direct methods can be
accelerated in the same way that iterative solvers have been.

In the last few years, a number of groups have been developing fast direct
solvers for boundary integral equations in two and three dimensions that
first compute a new type of ‘compressed’ factorization using O(Nα logβ N)
operations, with 1 ≤ α ≤ 2 and 0 ≤ β ≤ 2. Application of the factored
inverse then typically requires only O(N) or O(N log N) operations for each
right-hand side and/or low-rank perturbation of the system matrix (Canning
and Rogovin 1998, Chandrasekaran et al. 2006, Gope, Chowdhury and
Jandhyala 2005, Hackbusch 1999, Hackbusch and Khoromskij 2000, Mar-
tinsson and Rokhlin 2005, Pals 2004, Zhu and White 2005). Earlier work on
direct solvers had focused primarily on volume scattering (Chen 2002, Chew
1989) or the one-dimensional or quasi-one-dimensional case (Eidelman and
Gohberg 1999, Greengard and Rokhlin 1991, Lee and Greengard 1997, Mar-
tinsson and Rokhlin 2007, Michielssen, Boag and Chew 1996, Starr and
Rokhlin 1994).

The main purpose of this paper is to state the obvious; fast, direct
methods which result in compressed or ‘data sparse’ representations of the
inverse matrix should have a dramatic impact on simulation and design.
Stress analysis, electromagnetic analysis (including radar cross-section cal-
culations), biophysical simulation, and a host of other tasks can be formu-
lated in terms of a given integral equation with multiple right-hand sides
(Martinsson 2006). Further, when solving time-dependent partial differ-
ential equations in a fixed geometry, a computational bottleneck is often
the solution of a potential problem such as the Laplace equation with a
new right-hand side at each time step. A second motivation for fast direct
solvers is that the solution to ‘nearby’ problems can be computed very effi-
ciently. In particular, if the geometry undergoes a local perturbation, this

246 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

introduces a low-rank perturbation of the system matrix and, as indicated
above, rapid updating becomes feasible.

In the next two sections, we review the basic idea that allows for the con-
struction of fast solvers. We then show how to apply these ideas to dielectric
interface problems and the exterior Neumann problem in three dimensions,
both governed by the Laplace equation. For this, we extend the approach in-
troduced by Martinsson and Rokhlin (2005) for two-dimensional problems.
Our formalism, however, is a bit different and leads to some simplification
in both presentation and implementation. We illustrate the power of the
method for both molecular electrostatics and incompressible potential flow
and conclude with some remarks about future directions of research.

2. The rapid application of operators

For uniformly discretized convolution operators, the problem of excessive
cost of applying (or inverting) dense matrices was solved with the develop-
ment of the Fast Fourier Transform (FFT) and related algorithms (Cooley
and Tukey 1965). These methods were discovered during the 1960s, and
attain their computational speed by exploiting algebraic properties of the
operator. Such schemes are exact in exact arithmetic, and are fragile in the
sense that they depend on regularity of the input and output data for their
applicability. While the FFT revolutionized digital signal processing and a
number of other fields, the ability to handle irregular data is often essen-
tial. Moreover, many of the integral operators encountered in mathematical
physics are not translation-invariant.

Twenty years later, it was observed that many operators originating from
physics admit a different type of ‘fast’ method. Specifically, the kernels of
many such operators are smooth in the far field. When operators of this
type are discretized, the resulting matrices contain large submatrices whose
rank is low (to high precision). Combining this fact with simple structures
from computer science (adaptive quadtrees, oct-trees, etc.), it is possible
to construct algorithms for the application of such matrices to arbitrary
vectors for a cost proportional to N in some situations, and N log(N) in
others. Curiously, the first several algorithms of this type did not use the
rank argument explicitly; they were restricted to cases where the opera-
tor had some special analytical structure, and used the corresponding spe-
cial functions, for instance, multipole expansions for the Laplace equation
in Greengard and Rokhlin (1987), Hermite polynomials in Greengard and
Strain (1991), Laguerre polynomials in Strain (1992), etc. Naturally, each
of these schemes was limited to a narrow class of operators, though some of
them were quite efficient.

Another early group of ‘fast’ techniques replaced the kernel-dependent
special functions with some appropriately chosen bases: Chebyshev poly-

Fast direct solvers for integral equations in 3D domains 247

� � � �

−1 1 3 5

t x

Figure 2.1. A continuous charge distribution acting on a separated interval.

nomials in Alpert and Rokhlin (1991) and Rokhlin (1988), wavelets in Beyl-
kin, Coifman and Rokhlin (1991), wavelet-like objects in Alpert, Beylkin,
Coifman and Rokhlin (1993), etc. This approach is more general and easier
to use, since a single scheme is applicable to a wider class of operators. Fast
multipole and FFT-based variants have also been developed in a kernel-
independent manner. They rely on sampling the governing Green’s func-
tion in a systematic fashion and thereby building efficient representations
of distant interactions (Phillips and White 1997, Ying, Biros, Zorin and
Langston 2003, Gimbutas 1999).

Finally, it was observed that the preceding approaches, which build repre-
sentations that are universally applicable and do not make use of the detailed
distributions of sources, were suboptimal. That is, the numbers of basis
elements used significantly exceed the ranks of the specific block matrices
being approximated. Optimized low-rank approximations can be computed
explicitly (via the SVD, QR, or the more recently introduced interpolative
decompositions), and the resulting schemes can be noticeably faster than
the original FMMs. Early work in this direction includes Hackbusch (1999)
and Kapur and Long (1997).

It is instructive to examine this situation in some simple one-dimensional
settings.

Example 1. Consider the integral operator defined by the formula

f(x) = P (ϕ)(x) =
∫ 1

−1
log(x − t)ϕ(t) dt, (2.1)

with x ∈ [3, 5] (Figure 2.1). Using the language of classical potential theory,
one could say that P is the operator mapping the charge distribution on
the interval [−1, 1] to the induced potential created on the interval [3, 5].
Decomposing the function log(x − t) into a Taylor series with respect to t
around the point t = 0, we find that

f(x) =
(∫ 1

−1
ϕ(t) dt

)
log(x) −

∞∑
k=1

1
k

(∫ 1

−1
tk ϕ(t) dt

)
1
xk

. (2.2)

Truncating the series on the right-hand side of (2.2) after an appropriately
chosen number of terms, we obtain an approximation to f with any desired
precision. It is easily seen that the error of a k-term approximation is slightly
better than 1/3k, so that the number of terms required to obtain a specified

248 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

Table 2.1. Numbers of terms (Taylor, Legendre,
and SVD) required to obtain several accuracies
(in the L2-norm) in Example 1.

ε nTaylor nLegendre nSVD

10−30 61 39 18
10−24 48 32 14
10−20 40 26 12
10−16 31 21 10
10−12 23 16 7
10−10 19 13 6
10−6 10 8 4
10−4 7 6 3

accuracy ε is of the order − log3(ε). In the second column of Table 2.1 we
list the numbers of terms actually required to obtain selected accuracies.
We also note that (2.2) is a simplified version of the approximation used by
most early versions of the FMM.

Obviously, there is nothing magical about Taylor series: many other ap-
proximations could be used. For example, decomposing the function ϕ into
a Legendre series on the interval [−1, 1] and performing elementary manip-
ulations, we have

f(x) =
∫ 1

−1
log(x − t)

(∞∑
k=0

Pk(t)
∫ 1

−1
Pk(τ)ϕ(τ) dτ

)

=
∞∑

k=0

(∫ 1

−1
Pk(τ)ϕ(τ) dτ

)(∫ 1

−1
Pk(t) log(x − t) dt

)
(2.3)

= 2
∞∑

k=0

1
2k + 1

(∫ 1

−1
Pk(τ)ϕ(τ) dτ

)
(Qk+1(x) − Qk−1(x)),

where Qk is the ‘second’ Legendre function (see, for example, Gradshteyn
and Ryzhik (2000)). While the exact expression for the convergence rate of
the series (2.3) is somewhat cumbersome (it involves standard estimates on
the behaviour of Qk), it is much higher than the convergence rate of (2.2).
The numbers of terms required to obtain selected accuracies using this ap-
proach are listed in the third column of Table 2.1.

Finally, one can construct the Singular Value Decomposition (SVD) of
the operator P (defined in (2.1) above), representing it in the form

f(x) = P (ϕ)(x) =
∞∑

k=1

λk (vk, ϕ)uk(x), (2.4)

Fast direct solvers for integral equations in 3D domains 249

� �

−1 10

ti xi

Figure 2.2. Discrete charge distribution acting on an adjacent interval.

where uk : [3, 5] → R, vk : [−1, 1] → R, are the kth left and right singular
vectors, respectively, and λk is the kth singular value. Truncating the ex-
pansion (2.4) after k terms, we obtain a k-term approximation to P that is
optimal in the obvious sense. For this case, the numbers of terms required
to obtain selected accuracies are listed in the third column of Table 2.1.

Table 2.1 is quite revealing. It turns out that the approximation used by
the original FMM is surprisingly inefficient, and the orthogonal expansion
is only marginally better. For example, at 16 digits, the optimal number of
terms is 10 (which is quite good); the Taylor and Legendre series require 31
and 21 terms respectively.

Example 2. Here, we consider the n×n matrix An defined by the formula

An(i, j) = log(xi − tj), (2.5)

with the points t1, t2, . . . , tn, x1, x2, . . . , xn ∈ R defined by the formulae

ti = −1 +
(i − 1)

n
,

xi =
(i − 1)

n
.

(2.6)

In other words, the points {ti} are equispaced on the interval [−1, 0], and
the points {xi} are equispaced on [0, 1]. None of the classical expansions are
applicable in this case (since the ‘targets’ in this case are not separated from
the ‘charges’). On the other hand, the following lemma shows that the rank
of An defined in (2.5) is small compared to n. The fact that compression
does not require the separation of sources and targets will be essential in
constructing efficient direct solvers.

Lemma 2.1. To any fixed precision ε, the rank of the matrix An defined
in (2.5) is of the order − log(n) · log3(ε).

Outline of proof. We start by subdividing the interval [0, 1] into two subin-
tervals of equal size: [0, 1/2] and [1/2, 1] (see Figure 2.3). Obviously, the
interval [1/2, 1] is separated from the interval [−1, 0] by its own size, and
the rank of their interactions is of the order log3(ε) (see Example 1 above).
We proceed by subdividing the interval [0, 1/2] into subintervals [0, 1/4] and
[1/4, 1/2]; again, the interval [1/4, 1/2] is separated from the interval [−1, 0]
by its own size, and the rank of their interactions is bounded by log3(ε).
On the next step, we subdivide the interval [0, 1/4] into subintervals [0, 1/8],

250 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

� �

−1 10 1/21/41/8

Figure 2.3. Recursive subdivision of an interval used in Lemma 1.1.

Table 2.2. Number of SVD terms for various accuracies in L2 in Example 2.

ε 50 100 200 400 800 1600 3200 6400 12800 25600

10−30 27 32 36 41 45 50 54 58 62 67
10−24 23 26 30 34 37 40 44 47 51 54
10−20 20 23 26 29 31 34 37 40 42 45
10−16 17 19 21 23 26 28 30 32 34 36
10−12 13 15 17 18 20 21 23 24 25 27
10−10 11 13 14 15 17 18 19 20 21 22
10−6 8 8 9 10 10 11 11 12 12 12
10−4 5 6 6 6 7 7 7 7 7 7

[1/8, 1/4], and observe that the rank of interactions between the intervals
[−1, 0], [1/8, 1/4] is of the order log3(ε). This process will terminate af-
ter roughly log2(n) steps, and the total rank of interactions between the
intervals [−1, 0], [0, 1] is bounded by − log(n) · log3(ε).

In Table 2.2, we list the ranks of the matrix An in (2.5) to accuracies
varying from 10−4 to 10−30, with n varying from 50 to 25600. The ranks were
obtained via ‘brute force’ numerical calculation of the SVD, representing the
matrix in the form

An = Un,k Dk,k (Vn,k)∗ + O(ε), (2.7)

with the columns of each of the matrices Un,k, Vn,k orthonormal, Dk,k a
diagonal matrix with positive elements, and k tabulated in Table 2.2 as a
function of the L2-norm of the error. Obviously, once the expansion (2.7)
has been constructed, it can be used as a primitive ‘fast’ algorithm for the
application of the matrix An to arbitrary vectors, reducing the cost from
n2 to (2n + k) k.

Example 3. To illustrate the situation in two dimensions, consider the
integral operator P : L2(Ω1) → L2(Ω2) defined by the formula

f(x, y) = P (σ)(x, y) =
∫
Ω1

log ‖(x, y) − (u, v)‖σ(u, v) du dv, (2.8)

Fast direct solvers for integral equations in 3D domains 251

Ω1

(u, v)

Ω2

(x, y)

Figure 2.4. Two squares in the complex plane.

Table 2.3. Numbers of terms (Multipole and SVD)
required to obtain various accuracies in Example 3.

ε nmultipole nSVD

10−30 91 31
10−24 73 25
10−20 61 21
10−16 48 17
10−12 36 13
10−10 30 11
10−6 18 7
10−4 12 5

with Ω1 the square with vertices (1,−1), (1, 1), (−1, 1), (−1,−1), and Ω2

the square with vertices (5,−1), (5, 1), (3, 1), (3,−1), shown in Figure 2.4.
This situation is standard in the design of FMMs in two dimensions,

where P is compressed via the Taylor expansion

f(x, y) = Re
[(∫

Ω1

σ(u, v)
)

log z +
∞∑

k=1

1
k

(∫
Ω1

(u+iv)k σ(u, v)
)

1
zk

]
, (2.9)

z = x + iy and Re [·] denotes the real part of the complex-valued quantity
inside the brackets. An obvious alternative is to construct the SVD of P
(viewed as an operator mapping L2(Ω1) → L2(Ω2)). The resulting dimen-
sionalities are tabulated in Table 2.3 as a function of the required accuracy
ε, together with the numbers of terms in the multipole expansion (2.9)
achieving similar accuracy.

Observation 2.1. An examination of Tables 2.1–2.3 indicates that when
a ‘fast’ approximate algorithm is to be constructed, it might be much more
efficient to utilize decompositions obtained numerically (via SVD, QR, or

252 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

a related procedure) than to use one of the classical expansions. This is
quite understandable, since the SVD constructs an optimal expansion for
the operator in question, including detailed knowledge about the locations
of all sources, while the classical approximations are general tools. The
obvious cost of the purely numerical approach is the need to construct the
representations, i.e., the left and right singular vectors, etc. In many cases,
such as when solving a fixed linear system with multiple right-hand sides,
this cost is trivial: the matrices in question are factored once and used
repeatedly (see, for example, Martinsson (2006)).

3. Fast direct solvers for structured matrices

The systematic use of techniques of the type described above will allow us to
efficiently approximate the (dense) system matrices that arise from integral
equation discretizations of surfaces in three dimensions. Before entering into
those details, however, let us consider, from a purely linear-algebraic point
of view, the solution of a dense linear system with low-rank off-diagonal
blocks. For this, we let the linear system Ax = b be defined in block
matrix form by the equations

A11x1 + A12x2 + · · · + A1NxN = b1,

A21x1 + A22x2 + · · · + A2NxN = b2,

... (3.1)
AN1x1 + AN2x2 + · · · + ANNxN = bN ,

where xi,bi ∈ R
ni and Aij ∈ R

ni×nj . Solution of the full linear system of
dimension Ntot =

∑N
i=1 ni requires O(N3

tot) work.

Definition 3.1. When needed, the entry in the lth row and mth column
of Aij will be denoted by Aij(l, m). Likewise, the entry in the lth row and
mth column of A itself will be referred to as A(l, m).

Suppose now that the diagonal blocks Aii are full-rank but that each of
the Aij can be decomposed as the product of three low-rank matrices:

Aij = LiSijRj , (3.2)

where Li ∈ R
ni×ki , Sij ∈ R

ki×kj , and Rj ∈ R
kj×nj , with ki � ni and

kj � nj . It is worth noting that the factorization (3.2) is somewhat special
in that Li depends only on the index i and Rj depends only on the index
j. We will see how such a factorization arises in the next section, but for
now we assume it is given.

Under these conditions, we can introduce the auxiliary variables

yj = Rjxj (3.3)

Fast direct solvers for integral equations in 3D domains 253

and rewrite the original linear system (3.1) in the form

A11x1 + L1S12y2 + · · · + L1S1NyN = b1,

L2S21y1 + A22x2 + · · · + L2S2NyN = b2,

... (3.4)
LNSN1y1 + LNSN2y2 + · · · + ANNxN = bN .

The coupled linear system (3.3), (3.4), can be written in block matrix form:


A11 0 ··· 0 0 L1S12 ··· L1S1N

0 A22 ··· 0 L2S21 0 ··· L2S2N

0 0 ··· 0 ··· ··· ··· ···
0 0 ··· ANN LNSN1 LNSN2 ··· 0

R1 0 ··· 0 −I1 0 ··· 0
0 R2 ··· 0 0 −I2 ··· 0
0 0 ··· 0 0 0 ··· 0
0 0 ··· RN 0 0 ··· −IN







x1

x2

···
xN

y1

y2

···
yN




=




b1

b2

···
bN

0
0
···
0




,

(3.5)
where Ij is the identity matrix of dimension nj .

In (3.5), we have replaced the dense linear system of (3.1) with Ntot un-
knowns by a sparse system of dimension Ntot +Ktot, where Ktot =

∑N
i=1 ki.

The sparsity, of course, depends strongly on how few auxiliary variables
(Ktot) are needed. Note that the zero structure of the new system allows us
to form the Schur complement in the {yj} variables quite easily. Elementary
row elimination leads from (3.5) to


E11 S12 ··· S1N

S21 E22 ··· S2N

··· ··· ··· ···
SN1 SN2 ··· ENN






y1

y2

···
yN


 =




C1b1

C2b2

···
CNbN


, (3.6)

where
Eii = (RiA−1

ii Li)−1,Ci = EiRiA−1
ii . (3.7)

Combining (3.4), (3.6) and a little algebra, we can write

A−1 = D + B(E + S)−1C, (3.8)

where S is the dense matrix with off-diagonal blocks Sij given by (3.2),
Sii ≡ 0, E,C are the block-diagonal matrices with diagonal entries Eii,Ci,
respectively, and D,B are block-diagonal matrices with

Dii = A−1
ii (Ii − LiCi),

Bii = A−1
ii LiEi.

(3.9)

254 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

Note that E + S is the Schur complement system in (3.6).
Finally, it is worth computing the cost of this procedure. For concreteness,

suppose that n1 = n2 = · · · = nN = m, so that Ntot = Nm and naive
inversion would require O(N3m3) work. Suppose also that k1 = k2 =
· · · = kN = k. In the new procedure, the initial computation of all the
A−1

ii then requires O(Nm3) work. Since the Schur complement system is
of dimension Nk, inversion requires O(N3k3) work. The remaining work
is dominated by the computation of the {xj} once the {yj} are known
using (3.4) or (3.8). We leave it to the reader to verify that this requires
O(N2k2 + Nmk2 + Nm2) work.

In the original paper (Martinsson and Rokhlin 2005), the solver is based
directly on (3.8) and (3.9). The explicit introduction of the Schur com-
plement makes the derivation a bit simpler. More importantly, however,
the embedding of the system into a larger, sparse system allows for the
immediate application of standard sparse matrix technology.

Remark 3.1. The algorithm described above is a ‘single-level’ scheme.
That is, unknowns are assumed to have been grouped in some fashion so that
off-diagonal blocks are of minimal rank. This idea can be used recursively.
In multilevel versions of the method, the Schur complement (E+S) is treated
like the original matrix A. More precisely, the yj unknowns are themselves
grouped in such a way that off-diagonal blocks of the E + S system are of
minimal rank, etc.

It is the multilevel variants of the preceding analysis that form the basis
for many of the fast, direct solvers currently under development. In the end,
the method of choice will depend to a large extent on the constants implicit
in the O(Nα logβ N) notation, on robustness, and on ease of use. A multi-
level scheme in the one-dimensional setting is presented in the appendix to
illustrate the recursive nature of the computation.

4. Potential theory for the Poisson equation

We shift our attention now to the classical integral equation approach for
solving the Poisson equation in the context of molecular electrostatics. We
begin with the formulation of the problem as a partial differential equation:

−∇ · (ε(x)∇Φ(x)) =
K∑

j=1

qjδ(x − xj) in R
3, (4.1)

where ε(x) equals εin within the molecular surface, and ε(x) equals εout

outside. We will denote the interior region by Ωin, the exterior region by
Ωout, and the surface by S (Figure 4.1). We assume the sources all lie in the
interior of the molecule Ωin. In order to recast the problem as an integral

Fast direct solvers for integral equations in 3D domains 255

Figure 4.1. A typical molecular surface.

equation, we define the solution in terms of a source function Φsource that
accounts for the singular fields due to the point sources and a piecewise
harmonic function Φpol. That is, we write

Φ = Φsource + Φpol,

where

Φsource =
K∑

j=1

qj

4πεin

1
‖x − xj‖ .

Remark 4.1. A more important model for biophysical applications is ac-
tually the linearized Poisson–Boltzmann equation (Davis and McCammon
1990, Rocchia et al. 2002, Sharp and Honig 1990), but it is easier to follow
the main ideas in the present, simpler context.

Note that Φsource satisfies the Poisson equation and is continuous across
the surface S. However, the required interface conditions are that both the
total potential Φ and its flux ε∂Φ

∂ν must be continuous across the dielectric

256 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

boundary. For this, it is straightforward to see that Φpol must satisfy

∇2Φpol = 0 in Ωin, Ωout, (4.2)[
Φpol

]
= 0 on S, (4.3)[

ε
∂Φpol

∂ν

]
= −

[
ε
∂Φsource

∂ν

]
on S. (4.4)

Here, the expression [f] denotes the jump in the quantity f across S.
Following standard practice, we write Φpol as a single-layer potential due

to a charge distribution σ defined on the surface:

Φpol(x) =
1
4π

∫
S

σ(y)
‖x − y‖ dy. (4.5)

The single-layer potential (4.5) is continuous across S and satisfies the
following jump relations (Guenther and Lee 1988):

∂Φpol

∂ν−
(y0) ≡ lim

x→y0
x∈Ωin

∂Φpol

∂ν0
(x) = 1

2σ(y0) +
∫

S

∂G

∂ν0
(y0,y)σ(y) dy, (4.6)

∂Φpol

∂ν+
(y0) ≡ lim

x→y0
x∈Ωout

∂Φpol

∂ν0
(x) = −1

2σ(y) +
∫

S

∂G

∂ν0
(y0,y)σ(y) dy, (4.7)

where y0 denotes a point on S, ∂Φpol

∂ν0
(x) denotes the derivative in the di-

rection of the outward normal at y0, and G(x,y) denotes the free-space
Green’s function 1

4π|x−y| .
We will make use of the operator notation

Kσ(y0) =
∫

S

∂G

∂ν0
(y0,y)σ(y) dy (4.8)

to denote the normal derivative of the single-layer potential restricted to
the interface.

It is clear from the representation (4.5) that equation (4.2) is automat-
ically satisfied. Since the single-layer potential is continuous across the
interface, (4.3) is also satisfied. Imposing the remaining condition (4.4) and
using the jump relations, we obtain a Fredholm integral equation of the
second kind for σ:

1
2
σ(y0) + λ

∫
S

∂G

∂ν0
(y0,y)σ(y) dy = −λ

∂Φsource

∂ν
(y0), (4.9)

where λ = (εin − εout)/(εin + εout). In operator notation,

1
2
σ + λKσ = −λ

∂Φsource

∂ν
.

It remains only to discretize and solve (4.9). For this, we assume that
S has been specified as a collection of NT triangles. We approximate the

Fast direct solvers for integral equations in 3D domains 257

potential due to the polarization charge as

Φpol(x) =
1
4π

NT∑
j=1

∫
Tj

σj

‖x − y‖ dy, (4.10)

where Tj denotes the jth triangle and σj is constant over Tj . Imposing the
continuity of flux at each triangle centroid Cj results in the finite-dimen-
sional linear system

1
2
σj +

λ

4π

NT∑
k=1

∫
Tk

∂G

∂ν0
(Cj ,y)σk dy = −λ

∂Φsource

∂ν
(Cj). (4.11)

This approach is generally referred to as a first-order accurate collocation
scheme. We do not recommend such a quadrature rule in general, but
higher-order accurate discretizations are rather involved and will distract
us from our goals. For recent work on higher-order schemes in the context
of molecular modelling, see Bardhan et al. (2005).

When j = k, the integral contribution in (4.11) is well known to vanish.
That is, on a flat triangle,∫

Tj

∂G

∂ν0
(Cj ,y)σj dy = 0,

and the diagonal matrix entries A(i, i) of the linear system are simply equal
to 1

2 . When j and k are distinct, the entry A(j, k) is given by

A(j, k) =
λ

4π

∫
Tk

∂G

∂ν0
(Cj ,y) dy, (4.12)

namely, λ times the flux through the centroid of Tj due to a unit charge
distribution on Tk. It is well defined, although nearly singular for nearby
interactions. A(j, k) can easily be computed by a hybrid numerical/analytic
scheme: the triangles Tk and Tj are rotated in space so that Tk lies in
the xy-plane with one vertex at the origin and one segment lying along
the x-axis. Integration over Tk in the x-direction is performed analytically
and integration in the y-direction is performed numerically using Gaussian
quadrature. Twenty Gaussian nodes yield more than six digits of accuracy.

Of particular interest is the evaluation of the total electrostatic energy

1
2

K∑
i=1

qiΦ̃(xi), (4.13)

where

Φ̃(xi) = Φpol(xi) +
K∑

j=1
j �=i

qj

4πεin

1
‖xi − xj‖ .

258 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

Remark 4.2. We do not intend to survey the literature on numerical
methods for the Poisson or Poisson–Boltzmann equation here, except to
note that the standard approach in molecular electrostatics has been based
on the finite difference or finite element solution of the governing equations
(Davis and McCammon 1990, Holst, Baker and Wang 2000, Rocchia et al.
2002, Sharp and Honig 1990). There has also been a great deal of work on
integral equation methods, particularly since the advent of fast algorithms
for computing the matrix vector product in the solution of linear systems
like (4.11). In the Poisson–Boltzmann case, these include Altman, Bardhan,
Tidor and White (2006), Boschitsch, Fenley and Olson (1999), Huang and
Greengard (2002), Kuo et al. (2002), Lu, Cheng, Huang and McCammon
(2006) and Liang and Subramaniam (1997).

5. A single-level fast solver

We are now in a position to bring the linear algebra of Section 3 together
with the potential theory of Section 4. The essential step is the grouping
of unknowns in the integral equation so that off-diagonal blocks can be
well-approximated by low-rank matrices. In the one-dimensional case, the
ordering of unknowns on the interval is sufficient, but in higher dimensions
it is not. We begin by sorting all the triangles {Tj} that define the surface
S in (4.11) into cubic boxes. For this, we first enclose the surface S in
a cube B, and subdivide B into M × M × M boxes. Each of the NT

triangles is identified with the box containing its centroid. After this sorting
step, we let N denote the number of boxes that are non-empty (denoted by
B1, B2, . . . , BN). We then reorder the original triangles so that the first n1

belong to B1, the next n2 belong to B2, etc. The triangles in box Bi will be
referred to as surface patch (or patch) Pi.

Definition 5.1. Two disjoint boxes Bj and Bk are called neighbours if
they share a boundary point. Otherwise, they are called well-separated.
Two surface patches Pj and Pk are called neighbours or well-separated in
accordance with the relation between the boxes Bj and Bk.

Suppose now that box Bi and box Bj are well-separated and that Aij is
the block matrix describing the flux through ‘target’ triangles in Bi due to
charge distributions on ‘source’ triangles in Bj . From standard multipole
estimates (Greengard and Rokhlin 1997), it is clear that, for any fixed pre-
cision, the rank of Aij is bounded independent of the number of triangles
ni and nj . To be precise, for x ∈ Bi,

Φ(x) =
p∑

l=0

l∑
m=−l

Mm
l

Y m
l (θ, φ)
rl+1

+ O

((
1√
3

)p)
,

Fast direct solvers for integral equations in 3D domains 259

Partial view of
boxes used to
sort triangles

Neighbouring
patches

Patch Pi

Figure 5.1. A grid of M × M × M boxes encloses the surface S. The
triangles whose centroids are located in subcube Bi are identified as
surface patch Pi (dark grey). Its near-neighbour patches are indicated
in light grey. The remaining patches are well-separated.

where (r, θ, φ) are the spherical coordinates of x with respect to the centre
of box Bj , Y m

l (θ, φ) denotes the spherical harmonic of order l and degree m,
and the {Mm

l } are the net multipole moments of the charge distributions
on the ‘source’ triangles in Bj . For a precision ε, then, one requires no more
than k = O((log√3 ε)2) degrees of freedom to represent Φ(x). In short, the
field induced in Bi has guaranteed smoothness properties due entirely to
the separation between sources and targets and, to precision ε, the rank of
Aij is bounded by (log√3 ε)2.

Rather than using multipole expansions, however, one could ask whether
there is a purely linear-algebraic construct that expresses this fact. In par-
ticular, one could ask whether a subset of kj source triangles could be used
to represent the field in Bi with charge strengths computed from the nj

values σj . Similarly, one could ask whether a subset of ki triangles in Bi

could be used to sufficiently sample the field to precision ε, in the sense
that the field at all ni triangles in Bi can be computed by some kind of
interpolation procedure. This is not a classical factorization like the SVD

260 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

used in Section 2, but will be more suitable for our purposes. There are
some remarkable results in this direction, for instance, Cheng, Gimbutas,
Martinsson and Rokhlin (2005), Goreinov, Yrtyshnikov and Zamarashkin
(1997) and Gu and Eisenstat (1996).

Theorem 5.1. Suppose that the matrix Aij of dimension ni×nj has rank
k to precision ε. Then there exists a factorization of Aij of the form

Aij = LiSijRj + O(ε),

where Sij is a k × k submatrix of Aij , Rj is a k × nj matrix and Li is an
ni × k matrix. Further, this decomposition is well-conditioned; the norms
of Li and Rj are bounded by

√
k(n1 + n2).

Proof. This is simply a restatement of Theorem 3 of Cheng et al. (2005).

The preceding theorem is not constructive. It does not say which k row
indices and which k column indices to select in the extraction of the sub-
matrix Sij from Aij . Fortunately, Cheng et al. (2005) describe a QR-like
algorithm which computes such a factorization using O(n1 n2 k) work. (It
should be noted that this factorization is not unique, but that is of no
concern to us here.) We will refer to the k triangles in Bi so obtained as
the incoming skeleton and to the k triangles in Bj as the outgoing skeleton
(Cheng et al. 2005, Goreinov et al. 1997). Note that this is precisely what
we need. Rj serves as the mapping from the original vector of nj charges to
the k charges on the outgoing skeleton and Li serves as the mapping from
the field sampled on the k incoming triangles to the full set of ni triangles in
subcube Bi. We view the skeletonization procedures as black-box routines
and refer the reader to the original papers for further explanation.

Unfortunately, we are not yet done, since the well-separatedness criterion
does not apply to block matrices Aij when Bi and Bj are neighbours. In this
context, simple a priori estimates do not apply. Nevertheless, Theorem 5.1
and the construction of the skeletons still apply – it is just that the rank k
needs to be determined on the fly, given the desired precision ε. (This was a
principal motivation of the earlier paper, Gu and Eisenstat (1996).) Recall
that we considered precisely such a case in one dimension in Example 2 of
Section 2.

To see why the rank of interactions between neighbouring boxes might be
low, despite the absence of strict separation, readers familiar with potential
theory will recall that on a flat surface, the operator K in (4.8) is identi-
cally zero. It is perhaps reasonable, then, to expect that the block matrix
of interactions of two surface patches is in general not full-rank, even at
high precision.

Fast direct solvers for integral equations in 3D domains 261

5.1. Global skeletonization

The reader may have noticed that a strong form of ‘skeletonization’ is re-
quired in the set-up of the system (3.4). In particular, for each block of
unknowns corresponding to patch Pi, i = 1, . . . , N , the same number of
triangles ki is used for both the incoming and outgoing skeletons. One way
to accomplish this for patch Pi is to insist that the incoming and outgoing
skeletons actually be the same. For the computation, we concatenate all of
the Aij submatrices followed by all of the AT

ji submatrices, excluding the
diagonal blocks:

Ai ≡
[
Ai1Ai2· · ·Ai,i−1Ai,i+1· · ·AiN AT

1iA
T
2i· · ·AT

i−1,iA
T
i+1,i· · ·AT

Ni

]
. (5.1)

The ni × 2(Ntot − ni) matrix Ai so-formed can then be passed to the skele-
tonizing machinery of Cheng et al. (2005). The number of row indices ki

obtained through skeletonization is not known a priori , but returned as
part of the calculation.

Lemma 5.2. (Martinsson and Rokhlin 2005) Let Ai denote the ni×
2(Ntot −ni) matrix defined in (5.1) and let the interpolatory decomposition
for Ai be given by

Ai = LiSiVi + O(ε), (5.2)

for a specified precision ε, with Li ∈ R
ni×ki , Si ∈ R

ki×ki a submatrix of Aij ,
and Vi ∈ R

ki×2(Ntot−ni). Then, the triangles corresponding to the ki row
indices can serve as both the incoming and outgoing skeletons. Moreover,
in the notation of Theorem 5.1,

Aij = LiSijLT
j + O(ε).

Sketch of proof. Note that skeletonization of the first N − 1 blocks of Ai

guarantees that the ki row indices which have been returned serve as a satis-
factory incoming skeleton. In other words, the incoming field is sufficiently
sampled to the specified precision ε at those ki triangle centroids, and Li

is the mapping from those values to the values on all ni triangles in patch
Pi. The remainder of the theorem follows from considering the transpose
of (5.2). That is, simultaneous skeletonization of the second N − 1 block
matrices guarantees that the ki indices which have been returned also serve
as a satisfactory outgoing skeleton. Further, LT

i must serve as the mapping
from the given charges on all ni triangles in patch Pi to effective charges on
the skeleton triangles that correctly represent the field on all other patches
to precision ε.

As noted in Martinsson and Rokhlin (2005), for the problems of potential
theory, one can reduce the cost of this step dramatically. One need not
explore all the pairwise interactions between the triangles in patch Pi and
those which are well-separated, since any potential field induced inside Bi

262 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

by well-separated triangles could equally well be induced by a charge distri-
bution located on the interface separating Bi from its well-separated boxes.
That interface is simply the outer boundary of the 3 × 3 × 3 ‘supercell’ of
boxes centred on Bi (the set of boxes shown in Figure 5.1). In other words,
an artificial set of triangles on the surface of the supercell can replace all
of the Aij blocks in the construction (5.1) corresponding to well-separated
patches Pj . The number of triangles needed is determined only by the de-
sired precision ε. Likewise, if a subset of triangles inside Bi matches the
field on the surface of the supercell to precision ε, it will also do so in any
well-separated box. Thus, the same artificial set of triangles on the surface
of the supercell can replace all of blocks AT

ij corresponding to well-separated
patches Pj in the construction of (5.1) as well. Computationally, this means
that the dimension of the matrix which must be skeletonized for patch Pi

is of the order ni × 2(Ni + M), where Ni denotes the number of triangles
in the neighbours of Bi only and M denotes the number of triangles on the
supercell surface.

6. Numerical results I

We have implemented the one-level direct solver described in the preceding
sections, which takes as input an arbitrary triangulated surface and uses
the simple piecewise constant approximation of the surface charge density
to solve the dielectric interface problem

As an example, we selected atomic coordinates of the protein BPTI from
the Protein Data Bank (PDB) and used the STLib package to create a sur-
face triangulation (depicted in Figure 4.1). 20600 triangles were created in
the original discretization, and compression with a tolerance of 10−2 yielded
7049 ‘skeleton’ triangles (the dimension of the Schur complement in (3.6)).
Factorization (in this naive one-level approach) required about 20 minutes,
but the subsequent application of A−1 required about 0.3 seconds on a
single-processor 1.9 GHz workstation. A useful point of comparison is that
an FMM-based iterative solution would have required several seconds: much
shorter than the factorization time but more than an order of magnitude
slower than the application of the compressed inverse. Compression with
a tolerance of 10−1 yielded 1596 ‘skeleton’ triangles, factorization required
about 10 minutes, and the application of A−1 required about 0.1 seconds.

The power of the direct solver, of course, is made much more apparent
when solving the integral equation repeatedly. In molecular electrostatics,
for example, one is often interested in the electrostatic energy as the interior
charge distribution is modified. Each new set of charge locations induces
a different right-hand side in (4.9). The total cost (after the initial fac-
torization) for M interior charge distributions (solving M PDEs) is then
M × 0.1 seconds.

Fast direct solvers for integral equations in 3D domains 263

7. Local geometric perturbations

As implied in the Introduction, one of the striking areas of application of
fast direct solvers lies in their ability to accelerate the solution of ‘nearby’
problems. By nearby, we mean that the new system matrix is a low-rank
modification of the one for which we already have an efficient factorization.
In linear algebra, this idea is generally attributed to Sherman, Morrison and
Woodbury (1949, 1950). There is a host of applications of this idea. In the
context of integral equations, it has been used successfully, for example, in
both electromagnetics (Kastner 1989) and elasticity (James and Pai 1999).

One of our goals is to allow for electrostatic modelling in protein design
using the one- or two-body decomposable method of Marshall, Vizcarra and
Mayo (2005). This method requires the solution of many electrostatic prob-
lems with a fixed protein backbone, with local modifications of only one or
two amino acid side chains. Each such modification requires the deletion
and insertion of a modest number of triangles in the definition of the molecu-
lar surface. Since we will rely heavily on the Sherman–Morrison–Woodbury
approach, we briefly summarize it here in the context of boundary integral
equations.

7.1. Addition of triangles

Suppose that the matrix A of system (4.11) has been constructed for a
surface with N triangles, but that we now wish to solve the same interface
problem with an extra collection of p triangles added. We will denote the
added triangles by TN+1, . . . , TN+p. (For the moment, we can assume that
we are adding a second surface component.) Then, the new linear system
that describes the perturbed problem takes the form(

A B+

C+ D+

)(
σ
σp

)
=
(

f
fp

)
. (7.1)

Here, B+ ∈ R
N×p, C+ ∈ R

p×N , and D+ ∈ R
p×p with

B+(i, j) = A(Ti, TN+j),

C+(i, j) = A(TN+j , Ti),

D+(i, j) =

{
1
2 if i = j,

A(TN+i, TN+j) if i 	= j,

fp(j) = −λ
∂Φsource

∂ν
(CN+j),

where CN+j is the centroid of the jth added triangle, and A(Ti, Tj) is defined
in (4.12).

264 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

Block Gaussian elimination yields the Schur complement formula:

(I − D−1
+ C+A−1B+)σp = D−1

+ fp − D−1
+ C+A−1f . (7.2)

It is easy to check that setting up this p × p linear system requires p ap-
plications of A−1 to compute (A−1B+), p2 inner products of N -vectors to
compute C+(A−1B+), and p3 operations to compute D−1

+ (C+(A−1B+)).
The right-hand side requires one application of A−1, p inner products of N
vectors and one application of D−1

+ . Given σp, the first N entries of the
solution, namely σ, can be obtained from

σ = A−1f − A−1B+σp.

7.2. Deletion of triangles

Suppose now that one wants to subtract q triangles Tj1 , Tj2 , . . . , Tjq from
the original surface instead of adding them. This can be done with a simple
trick; one adds new triangles TN+1, TN+2, . . . , TN+q to the discretization in
exactly the same spatial location as Tj1 , Tj2 , . . . , Tjq , imposing the condi-
tion that the charge density on the new triangles {σN+1, σN+2, . . . ,σN+q}
negates the charge density on the original ones {σj1 , σj2 , . . . ,σjq}.

We leave it to the reader to verify the following lemma.

Lemma 7.1. Let the original linear system of (4.11) be denote by Aσ = f
and let {j1, j2, . . . , jq} denote the indices of q triangles which are to be
deleted. Consider the augmented linear system(

A B−
C− D−

)(
σ
σ−

)
=
(
f
0

)
, (7.3)

where D− ∈ R
q×q, B− ∈ R

N×q, and C− ∈ R
q×N with

D−(i, j) = δij ,

B−(i, l) =

{
0 if i = jl,

A(i, jl) if i 	= jl,

C−(l, i) =

{
1 if i = jl,

0 if i 	= jl.

Then the solution components in σ are equal to those that would be ob-
tained from the linear system (4.11) with the triangles {Tj1 , Tj2 , . . . , Tjq}
deleted.

7.3. Simultaneous addition and deletion of triangles

The low-rank modification of the linear system (4.11) corresponding to
adding p triangles {TN+1, . . . , TN+p} and subtracting q triangles with in-
dices {j1, . . . , jq} can be carried out simultaneously. It is straightforward to

Fast direct solvers for integral equations in 3D domains 265

see that the final system has the following structure:
 A B+ B−

C+ D+ B∗
C− 0 D−




 σ

σ+

σ−


 =


 f

fp
0


, (7.4)

where B+,B−,C+,C−,D+,D−, fp are defined above and

B∗(l, m) = A(TN+i, Tjm).

8. Numerical results II

Let us now consider a triangulated aircraft with 28252 elements (Figure 8.1).
To compute potential flow around the aircraft, we assume the velocity field
is given by

∇Φ = ∇Φin + ∇Φscat,

where

∇Φin = (1, 0, 0).

That is, we assume the incoming velocity is uniform and oriented along the

Figure 8.1. A triangulated aircraft.

266 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

Figure 8.2. The induced potential
on the aircraft surface.

x-axis. Φscat is the ‘scattered’ field induced by the aircraft in response to
the zero normal flow (Neumann) boundary condition:

∂Φ
∂ν

= 0

or

∂Φscat

∂ν
= −∂Φin

∂ν
.

For this the single-layer potential representation yields the integral equation
(4.9) with λ = −1.

After compression to two digits of accuracy, the skeletonized Schur com-
plement structure contains 4759 triangles. Our single-level scheme requires
about 15 minutes for this step, while the cost for each subsequent applica-
tion of the inverse is 0.2 seconds.

Suppose now that we introduce an auxiliary ‘flap’ (Figure 8.3) with four-
teen new triangles. This is not a well-resolved structure: it is simply being
used to illustrate the capability of the algorithm discussed in the preceding
section. Using the updating method of the preceding section, the inverse
matrix had to be applied to fourteen right-hand sides at a total cost of
14 × 0.2 seconds.

Fast direct solvers for integral equations in 3D domains 267

Figure 8.3. A small flap is added to the geometry.

When the number of triangles being added or subtracted is large, the
Sherman–Morrison–Woodbury approach becomes inefficient. Rather than
doing the update exactly, one can solve the system (7.4) iteratively, with
preconditioner 

A−1 0 0
0 I 0
0 0 I


. (8.1)

9. Conclusions

During the past twenty years, many previously intractable problems in com-
putational physics and engineering were brought within reach by the com-
bination of hardware improvements and fast algorithms. For computational
tools to be well-integrated into design processes, however, we will need more.
Fast, direct methods are natural candidates for this, since they lead to very
fast schemes for problems involving multiple right-hand sides, and rapid
updating for modest changes to the system matrix. It is also worth noting
that this technology will have an impact in many time-dependent simula-
tions where implicit methods play a role. Such methods typically require
the solution of some partial differential equation at each time step, often in
a fixed geometry.

268 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

In this paper, we have tried to present some of the ideas that form the
basis for these direct solvers. This is an active area of research and there are
many related schemes currently under development in a variety of research
groups. We expect that these methods will mature rapidly over the next
few years.

Acknowledgements

We would like to thank David Bindel for several useful discussions and for
suggesting the sparse linear-algebraic viewpoint outlined in Section 3.

Appendix: Rapid inversion of operators.

As indicated in the Introduction, there is a body of work addressing the
efficient, direct solution of integral equations: see, for instance, Canning
and Rogovin (1998), Chandrasekaran et al. (2006), Chen (2002), Cheng
et al. (2005), Chew (1989), Eidelman and Gohberg (1999), Gope et al.
(2005), Greengard and Rokhlin (1991), Hackbusch (1999), Hackbusch and
Khoromskij (2000), Lee and Greengard (1997), Martinsson and Rokhlin
(2005, 2007), Michielssen et al. (1996), Pals (2004), Starr and Rokhlin
(1994), and Zhu and White (2005).

Here, we illustrate the basic idea of these multilevel schemes. For this,
suppose that we would like to solve the system of linear-algebraic equations

A X = Y, (A.1)

with the n × n matrix A defined by the formula

Aij = log(| yi − xj |), (A.2)

whenever i 	= j, and
Aii = 1, (A.3)

with the points x1, x2, . . . , xn ∈ R defined by the formulae

xi = −1 +
2 (i − 1)
(n − 1)

. (A.4)

In other words, the points {xi} are equispaced on the interval [−1, 1] (note
the similarity to the Example 2 above). Clearly, the matrix A is dense, and
solving the system (2.9) directly will require order n3 operations. Below,
we outline a simple multilevel direct procedure that will solve (2.9) in order
n (log(n))2 operations.

For simplicity, we will assume that n = m 2k, where m is a small integer
number (m ∼ 20 is a reasonable choice), and k is a positive integer. We start
by subdividing the interval [−1, 1] into two subintervals [a, j], [j, q], with
a = −1, j = 0, and q = 1. Each of the intervals [a, j], [j, q] is subdivided into

Fast direct solvers for integral equations in 3D domains 269

�� �� �� � � �

a b c d e f g h i j k l m n o p q

Figure A.1. The interval [−1, 1] is recursively subdivided four times.

[a, b] [b, c] [c, d] [d, e] [e, f] [f, g] [g, h] [h, i] [i, j] [j, k] [k, l] [l, m] [m, n] [n, o] [o, p] [p, q]

[a, c] [c, e] [e, g] [g, i] [i, k] [k,m] [m, o] [o, q]

[a, e] [e, i] [i,m] [m, q]

[a, i] [i, q]

[a, q] = [−1, 1]

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�

��

�
�
��

�
�

��

�
�
��

�
�

��

�
�
��

�
�

��

�
�
��

	
	

		

�
�

���

	
	

		

�
�

���

�

���������

Figure A.2. A depiction of the tree structure created by recursive subdivision.

two subintervals of equal length: [a, j] = [a, f] ∪ [f, j], [j, q] = [j, n] ∪ [n, q].
After continuing this process of recursive splitting for two more steps, we
obtain the situation depicted in Figure A.1.

We impose a tree structure on the obtained subdivision, as depicted in
Figure A.2; now the intervals [a, j], [j, q], are children of the interval [a, q];
the intervals [a, f], [f, j] are children of the interval [a, j], etc.

Figure A.4(a) depicts the matrix A, subdivided into a collection of sub-
matrices; with the exception of the diagonal blocks (marked with X), each
of the submatrices is responsible for the interaction of a pair of subintervals
depicted in Figure A.1 having the same parent (as depicted in Figure A.2).

Observation A.1. Due to Lemma 2.1 above, the numerical rank of each
of the submatrices marked with L in Figure A.4 is roughly log(n) · log(1/ε),
and we will assume that it has been represented in the form

L =
p∑

i=1

αi β
∗
i , (A.5)

where p ∼ log(n) · log(1/ε), and α1, α2, . . . αp, β1, β2, . . . βp, are vectors of
appropriate dimensionality.

270 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

1
1

1

1
1

1
1

1

B
i

i

Figure A.3. The matrix Bn,i is derived from the n × n
identity matrix by replacing the diagonal block of
dimension m×m beginning at the (i, i) entry with B.

The above observation leads to a ‘fast’ procedure for the solution of (2.9)
in a fairly straightforward manner; below is a description of a rudimentary
scheme of this type. We start with a definition.

Definition A.1. Suppose that m, n, i are three positive integers, such that
m ≤ n, i + m ≤ n + 1, and that B is an m × m matrix. We will denote by
Bn,i the n× n matrix obtained from the n× n identity matrix by replacing
with B the m×m diagonal block starting at the ith row, and ending at the
(i+m−1)st row (see Figure A.3). In other words, when the operator Bn,i :
Rn → Rn acts on the vector x ∈ Rn, it applies the operator B : Rm toRm to
a subset of the vector x consisting of the elements xi, xi+1, xi+2, . . . , xi+m−1,
and leaves the rest of the elements of x unchanged.

Step 1. We start by inverting each of the diagonal blocks X1, X2, . . . Xk in
A (see Figure A.4(a)), obtaining their inverses Y1, Y2, . . . Yk, and multiplying
A by the product

Y = Y n,1
1 ◦ Y n,m+1

2 ◦ Y n,2m+1
3 ◦ · · · ◦ Y

n,(2k−1)m+1

2k . (A.6)

We observe that the matrices Y n,1
1 , Y n,m+1

2 , . . . , Y
n,(2k−1)m+1

2k commute with
each other, and that the product B1 = Y A has the form depicted in Fig-
ure A.4(a) (the ‘I’ in the diagonal blocks denote identity matrices). We also
observe that the cost of this step is of the order 2k · m3 + log2(n) · m2.

Fast direct solvers for integral equations in 3D domains 271

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

X1

X16

X2

X15

X3

X14

X4

X13

X5

X12

X6

X11

X7

X10

X8

X9

(a)

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

(b)

L

L

L

L

L

L

I

L

L

I

I

L

L

I

IL

LI

IL

LI

(c)

L

L

L

L

L

L

I

I

I

I

(d)

L

L

I

I

(e)

I

(f)

Figure A.4. The system matrix for Example 4 is shown in (a). Each
off-diagonal block matrix corresponds to the interactions of a pair of
subintervals having the same parent. A graphical depiction of the
inversion process is shown in (b)–(f).

272 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

Step 2. We observe that each of the diagonal blocks of dimensionality
2m × 2m in B1 (depicted in Figure A.1) is a sum of the identity and a
matrix of rank 2p (see (A.5) above) and that the total number of such
blocks in Figure A.4(a) is 2k−1. Denoting the inverse of the jth of these
blocks by Zj , we multiply the matrix B1 from the left by the product

Z = Zn,1
1 ◦ Zn,m+1

2 ◦ Zn,2m+1
3 ◦ · · · ◦ Z

n,(2k−1)m+1

2k , (A.7)

obtaining the matrix B2 depicted in Figure A.4(b). We also apply Z to the
right-hand side, so that the resulting system of linear equations is equivalent
to the initial one. The cost of this step is of the order 2(k−1)·m2+log2(n)·m2.

Step 3. This step is identical to Step 2, except the dimensionality of
the diagonal blocks is doubled, and the number of these blocks is halved;
the result is depicted in Figure A.4(c), and the cost remains of the order
2(k−1) · m2 + log2(n) · m2.

Step k. This final step is illustrated in Figures A.4(e) and A.4(f), and its
result is the identity matrix in dimension m · 2k = n; its cost is the same as
that of Steps 1 and 2.

Summing up the costs of all Steps 1 to k, and observing that k ∼ log2(n),
we obtain the total cost O(n log4(n)).

Remark A.1. While the cost of the simple scheme described above is of
the order n log4(n), fairly simple modifications produce algorithms whose
cost is proportional to n (see, for example, Martinsson and Rokhlin (2005)).
In higher dimensions, logarithmic factors can not be eliminated entirely (at
least, not with the currently available techniques), and one ends up with
algorithms costing O(n logα(n)) operations, with α ∈ [1, 3]. This is an active
area of research, and both the algorithms and the resulting estimates are
undergoing rapid evolution.

REFERENCES

B. Alpert and V. Rokhlin (1991), ‘A fast algorithm for the evaluation of Legendre
expansions’, SIAM J. Sci. Statist. Comput. 12, 158–179.

B. Alpert, G. Beylkin, R. Coifman and V. Rokhlin (1993), ‘Wavelet-like bases for
the fast solution of second-kind integral equations’, SIAM J. Sci. Comput.
14, 159–184.

M. D. Altman, J. P. Bardhan, B. Tidor and J. K. White (2006), ‘FFTSVD:
A fast multiscale boundary-element method solver suitable for bio-MEMS
and biomolecule simulation’, IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems 25, 274–284.

J. P. Bardhan, M. D. Altman, S. M. Lippow, B. Tidor and J. K. White (2005),
‘A curved panel integration technique for molecular surfaces’, in Proc. NSTI–
Nanotech 2005 Conf., Vol. 1, pp. 512–515.

Fast direct solvers for integral equations in 3D domains 273

G. Beylkin, R. Coifman and V. Rokhlin (1991), ‘Fast wavelet transforms and nu-
merical algorithms I’, Comm. Pure Appl. Math. 14, 141–183.

A. H. Boschitsch, M. O. Fenley and W. K. Olson (1999), ‘A fast adaptive multipole
algorithm for calculating screened Coulomb (Yukawa) interactions’, J. Com-
put. Phys. 151, 212.

F. X. Canning and K. Rogovin (1998), ‘Fast direct solution of standard moment-
method matrices’, IEEE Antennas Propag. 40, 15–26.

J. Carrier, L. Greengard and V. Rokhlin (1988), ‘A fast adaptive multipole algo-
rithm for particle simulations’, SIAM J. Sci. Statist. Comput. 9, 669–686.

S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons and T. Pals (2006), ‘A fast solver
for HSS representations via sparse matrices’, SIAM J. Matrix Anal. Appl. 29,
67–81.

Y. Chen (2002). ‘Fast direct solver for the Lippman–Schwinger equation’, Adv.
Comput. Math. 16, 175–190.

H. Cheng, Z. Gimbutas, P. G. Martinsson and V. Rokhlin (2005), ‘On the com-
pression of low rank matrices’, SIAM J. Sci. Comput. 26, 1389–1404.

W. C. Chew (1989). ‘An N2 algorithm for the multiple scattering solution of N
scatterers’, Micro. Opt. Tech. Lett. 2, 380–383.

W. C. Chew, J.-M. Jin, E. Michielssen and J. Song, editors (2001). Fast and Effi-
cient Algorithms in Computational Electromagnetics, Artech House, Boston.

J. W. Cooley and J. W. Tukey (1965), ‘An algorithm for the machine calculation
of complex Fourier series’, Math. Comput. 19, 297–301.

E. Darve and P. Have (2004), ‘Fast multipole method for Maxwell equations stable
at all frequencies’, Royal Soc. London, Trans. Ser. A 362, 603–628.

M. E. Davis and J. A. McCammon (1990), ‘Electrostatics in biomolecular structure
and dynamics’ Chem. Rev. 90, 509–521.

Y. Eidelman and I. Gohberg (1999). ‘Linear complexity inversion algorithms for a
class of structured matrices’, Integral Equations Operator Theory 35, 28–52.

Z. Gimbutas (1999), A generalized fast multipole method for non-oscillatory ker-
nels. PhD Dissertation, Yale University.

D. Gope, I. Chowdhury and V. Jandhyala (2005), ‘DiMES: Multilevel fast direct
solver based on multipole expansions for parasitic extraction of massively
coupled 3D microelectronic structures’, in Proc. 42nd Annual Conference on
Design Automation, pp. 159–162.

S. A. Goreinov, E. E. Yrtyshnikov and N. L. Zamarashkin (1997), ‘A theory of
pseudoskeleton approximations’, Linear Algebra Appl. 261, 1–21.

I. S. Gradshteyn and I. M. Ryzhik (2000), Table of Integrals, Series, and Products,
Academic Press, New York.

L. Greengard and J. Helsing (1998), ‘On the numerical evaluation of elastostatic
fields in locally isotropic two-dimensional composites’, J. Mech. Phys. Solids
46, 1441–1462.

L. Greengard and V. Rokhlin (1987), ‘A fast algorithm for particle simulations’,
J. Comput. Phys. 73, 325–348.

L. Greengard and V. Rokhlin (1991), ‘On the numerical solution of two-point
boundary value problems’, Comm. Pure Appl. Math. 44, 419–452.

L. Greengard and V. Rokhlin (1997), A new version of the fast multipole method
for the Laplace equation in three dimensions. In Acta Numerica, Vol. 6, Cam-
bridge University Press, pp. 229–269.

274 L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin

L. Greengard and J. Strain (1991). ‘The Fast Gauss Transform’, SIAM J. Sci.
Statist. Comput. 12, 79–94.

M. Gu and S. C. Eisenstat (1996), ‘Efficient algorithms for computing a strong
rank-revealing QR factorization’, SIAM J. Sci. Comput. 17, 848–869.

R. B. Guenther and J. W. Lee (1988), Partial Differential Equations of Mathemat-
ical Physics and Integral Equations, Prentice-Hall, Englewood Cliffs, NJ.

W. Hackbusch (1999), ‘A sparse matrix arithmetic based on H-matrices I: Intro-
duction to H-matrices’, Computing 62, 89–108.

W. Hackbusch and B. N. Khoromskij (2000), ‘A sparse H-matrix arithmetic II:
Application to multi-dimensional problems’, Computing 64, 21–47.

W. Hackbusch and Z. P. Nowak (1989), ‘On the fast matrix multiplication in the
boundary element method by panel clustering’, Numer. Math. 54, 463–491.

M. J. Holst, N. A. Baker and F. Wang (2000), ‘Adaptive multilevel finite element
solution of the Poisson–Boltzmann equation I: Algorithms and examples’,
J. Comput. Chem. 21, 1319–1342.

J. Huang and L. Greengard (2002), ‘A new version of the fast multipole method for
screened Coulomb interactions interactions in three dimensions’, J. Comput.
Phys. 180, 642–658.

D. L. James and D. K. Pai (1999), ‘ArtDefo: Accurate real time deformable ob-
jects’, in Proc. SIGGRAPH 99, pp. 65–72.

S. Kapur and D. Long (1997), ‘IES3: A fast integral equation solver for efficient
3-D extraction’, in Proc. IEEE International Conference on Computer Aided
Design, pp. 448–455.

R. Kastner (1989), ‘An ‘add-on method’ for the analysis of scattering from large
planar structures’, IEEE Trans. Antennas Propag. 37, 353–361.

S. S. Kuo, M. D. Altman, J. P. Bardhan, B. Tidor and J. K. White (2002), ‘Fast
methods for simulation of biomolecular electrostatics’, in Proc. IEEE–ACM
Int. Conf. Comput. Aided Design, pp. 466–473.

J.-Y. Lee and L. Greengard (1997), ‘A fast adaptive numerical method for stiff
two-point boundary value problems’, SIAM J. Sci. Comput. 18, 403–429.

J. Liang and S. Subramaniam (1997), ‘Computation of molecular electrostatics
with boundary element methods’, Biophys. J. 73, 1830.

B. Lu, X. Cheng, J. Huang and J. A. McCammon (2006), ‘Order N algorithm for
computation of electrostatic interactions in biomolecular systems’, Proc. Nat.
Acad. Sci. 103, 19314–19319.

S. A. Marshall, C. L. Vizcarra and S. L. Mayo (2005), ‘One- and two-body decom-
posable Poisson–Boltzmann methods for protein design calculations’, Protein
Science 14, 1293–1304.

P.-G. Martinsson (2006), ‘Fast evaluation of electrostatic interactions in multiphase
dielectric media’, J. Comput. Phys. 211, 289–299.

P.-G. Martinsson and V. Rokhlin (2005), ‘A fast direct solver for boundary integral
equations in two dimensions’, J. Comput. Phys. 205, 1–23.

P.-G. Martinsson and V. Rokhlin (2007), ‘A fast direct solver for scattering prob-
lems involving elongated structures’, J. Comput. Phys. 221, 288–302.

E. Michielssen, A. Boag and W. C. Chew (1996), ‘Scattering from elongated
objects: Direct solution in O(N log2 N) operations’, IEEE Proc. H 143,
277–283.

Fast direct solvers for integral equations in 3D domains 275

K. Nabors and J. White (1991), ‘FASTCAP: A multipole accelerated 3-D capaci-
tance extraction program’, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems 10, 1447–1459.

N. Nishimura (2002), ‘Fast multipole accelerated boundary integral equation meth-
ods’, Appl. Mech. Rev. 55, 299–324.

T. Pals (2004), Multipole for scattering computations: Spectral discretization, sta-
bilization, fast solvers. PhD Dissertation, Department of Electrical and Com-
puter Engineering, University of California, Santa Barbara.

J. R. Phillips and J. White (1997), ‘A precorrected-FFT method for electrostatic
analysis of complicated 3-D structures’, IEEE Trans. Computer-Aided Design
16, 1059–1072.

W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera and B. Honig
(2002), ‘Rapid grid-based construction of the molecular surface for both
molecules and geometric objects: Applications to the finite difference Poisson–
Boltzmann method’, J. Comput. Chem. 23, 128–137.

V. Rokhlin (1985), ‘Rapid solution of integral equations of classical potential the-
ory’, J. Comput. Phys. 60, 187–207.

V. Rokhlin (1988), ‘A fast algorithm for the discrete Laplace transformation’,
J. Complexity 4, 12–32.

Y. Saad and M. H. Schultz (1986), ‘GMRES: A generalized minimum residual
algorithm for solving nonsymmetric linear systems’, SIAM J. Sci. Statist.
Comput. 7, 856–869.

K. A. Sharp and B. Honig (1990), ‘Electrostatic interactions in macromolecules:
Theory and applications’, Ann. Rev. Biophys. Biophys. Chem. 19, 301–332.

J. Sherman and W. J. Morrison (1949), ‘Adjustment of an inverse matrix corre-
sponding to changes in the elements of a given column or a given row of the
original matrix’, Ann. Math. Statist. 20, 621.

P. Starr and V. Rokhlin (1994). ‘On the numerical solution of two-point boundary
value problems II’, Comm. Pure Appl. Math. 47, 1117–1159.

J. Strain (1992), ‘The fast Laplace transform based on Laguerre functions’, Math.
Comp. 58, 275–284.

M. A. Woodbury (1950), Inverting modified matrices. Memorandum Report 42,
Statistical Research Group, Princeton University.

L. Ying, G. Biros, D. Zorin and M. H. Langston (2003), ‘A new parallel kernel-
independent fast multipole method’, in Proc. ACM/IEEE Conf. on Super-
comp., p. 14.

Z. Zhu and J. K. White (2005), ‘FastSies: A fast stochastic integral equation
solver for modeling the rough surface effect’, in Proc. 2005 IEEE/ACM Int.
Conference on Computer-Aided Design, pp. 675–682.

Online references

Protein Data Bank: www.rcsb.org

STLib package: www.cacr.caltech.edu/˜sean/projects/stlib/html/mst

